
Instructor :

Murad Njoum

Objectives:
After completing this lab, the student should be able to:
- Include programming selection constructs in shell
scripts.
- Use the if/else statement to manipulate integer and string
values as well as file properties.
- Apply the case statement programming construct for
efficient selections as well as creating menus

Unix commands return a value (success = zero and failure
or error = non-zero) to the shell. This value is stored in the
variable (?) as follows

CONT..
Run the command:
ls –al
Now run the command:
echo $?
What result did you get? ___________ Why?
________________________________.
Now run the command:
cp
followed by the command:
echo $?
What result did you get? ___________ Why?
________________________________.

0
0 : NO ERRORS, SUCCESS COMMAND EXECUTION

1
(1) NONE ZERO :ERRORS FAILURE COMMAND EXECUTION

 Re-Write the following

 if $1 > out 2> err

then

echo Command $1 succeed

else

echo Command $1 failed

fi

:wq

Write the following script (checkcommand):

#!/bin/bash

if $1

then

echo command $1 succeed

else

echo command $1 failed

fi
:wq

• checkcommand date
What result did you get? ___________ Why?_________________________________.

• Now run the command:
checkcommand mv

What result did you get? ___________ Why? _________________________________.

SUCCESS COMMAND DATE IS SUCCESS CORRECTLY AND VALUE OF ? IS
ZERO (RETURN TO IF STATEMENT)

COMMAND MV ISN'T SUCCESS AND VALUE OF ? IS NON-ZEROFAILURE

CONT..
 This is one way to use the if/else structure.

 Still, many scripts do not check commands, but rather check for variable
values, file properties, and number of arguments.

 To do that we need to use one of two syntaxes:

if test condition (e.g. if test $# -eq 2)
or
if [condition] (e.g. if [$# -eq 2])

if [conditional expression]

then

statement1

statement2

…..

fi

In Bash, we have the following conditional statements:

if..then..fi statement (Simple If)

if..then..else..fi statement (If-Else)

if..elif..else..fi statement (Else If ladder)

if..then..else..if..then..fi..fi..(Nested if)

if [conditional

expression]

then statement1

statement2

else

statement3

statement4

fi

if..elif..else..fi statement (Else If ladder) if..then..else..if..then..fi..fi..(Nested if)

if [conditional expression1]

then

statement1

statement2

else

if [conditional expression2]

then

statement3

fi

fi

if [conditional expression1]

then

statement1

statement2

elif [conditional expression2]

then

statement3

statement4

else

statement5

fi

To compare integer values, we use the following relational operators:

-lt (less than),

-gt (greater than)

-eq (equal)
-le (less than or equal)

-ge (greater than or equal),

-ne (not equal).

INTEGER
VALUES:

X=5

Y=10

expr $X + $Y

Or you can use

echo (($X + $Y))

#! /bin/bash

echo "Enter two numbers"

read num1 num2

sum=$(expr $num1 + $num2)

#without spaces:print
concatof two numbers 10+10

echo "The sum is = $sum"

#! /bin/bash

echo "Enter two numbers"

read num1 num2

sum=$(($num1+$num2))

echo "The sum is = $sum"

• Write a script called sum, that
accepts integer number and print
the sum

echo enter two numbers

read num1

read num2

sums=$((num1+num2))

echo sum=$sums

echo sum=$(($1+$2))

Let us rewrite the delete script we wrote in the previous lab to check

for the correct number of arguments as follows:

vi delete

if [$# -eq 1]

then

rm $1

echo $1 has been deleted

exit 0 #This line return 0 from the script (success)

else

echo Usage: delete filename

exit 1

fi

:wq

 Now try the above script as follows:

 delete myfile (assuming myfile exists and is a regular file)
Then run the command:
echo $?
Did it work?__________________________.
What is the value of variable (?) ?____________________________

 Now try it as follows:
delete
Then run the command:
echo $?
What happened? ______________________

 Why?__________________________.
What is the value of variable (?) ?____________________________

YES
0

1
DISPLAY ERROR MESSAGE

NO ARGUMENT

To check file values we use the following

operators:

-f filename (to check if file exists and is of type

file)

-d filename (to check if directory exists and is

of type directory)

-x,-r,-w (to check if a user has execute, read, or

write permissions on a file)

Let us rewrite our delete script to include those:

#!/bin/bash

if [$# -ne 1]

then

echo usage: delete filename

exit 1

else

if [-f $1]

then

rm –f $1

echo $1 has been deleted

exit 0

elif [-d $1]

then

rm –rf $1

echo $1 directory has been deleted

exit 0

else

echo $1: No such file or directory

exit 2

fi

fi

#! /bin/bash
if [$# -ne 2]

then
echo Usage: copy file from source to destination
exit 1

else
if [-f $1]

then
cp $1 $2
echo $1 has bee copied to $2
exit 0

elif [-d $1]
then
cp -r $1 $2
echo $1 directory has been copied to $2 directory
exit 0

else
echo No such file or directory has been copied
exit 2

fi
fi

if [$# -ne 1]

then echo Usage: checkname name

exit 1

else

if ["$1" = "ahmad"]

then echo $1:Hello

exit 0

else

echo $1:Goodbye

exit 0

fi

fi

Sometimes our scripts need to check string values. To do that we need to use the following operators:

= (equal), != (not equal) ,-n (none null string) -z (zero string (null))

Let us try some of those. let us write a script to check the value of the name entered by the user:

vi checkname

Try it as follows:

checkname ahmad

What happened?__________________.

checkname suha

What happened?__________________.

checkname

What happened?__________________.

#! /bin/bash
if [-z "$1"]
then
echo usage: cannot be empty, enter string
exit 1
else
if ["$1" = "ahmad"]
then
echo hello

else
echo Goodbye
exit 0
fi

fi

Try Update to

following code:

Write a script called checkusername

which works as follows:

checkusername

No names were entered

checkusername u1112233

u1112233 = Ahmad Hamdan

checkusername u11

u11 = No such user name

checkusername bash

bash = No such user name

#! /bin/bash

if [-z "$1"]
then
echo No names were entered
exit 1
fi

var=$(grep ^$1 /etc/passwd |cut -d : -f1)

if ["$var" = "$1"]
then
name=$(grep ^$1 /etc/passwd |cut -d : -f5 |tr '_' ' ')
echo $1=$name
exit 0

else
echo $1=No Such user name
exit 2

fi

Case Statement

We can also use a case statement (similar to switch in c) to check for values. The syntax

is as follows:

case value in

pattern1) statements

;; # ;; is the break statement

pattern2) statements

;;

*) statements # * stand for default case

esac

#! /bin/bash

echo "Please Select your choice (1-4):

1-Run script1

2-Run Script2

3-Run Script3

4-Exit main script"

read choice

case $choice in

1) ./script1

;;

2) ./script2

;;

3) ./script3

;;

4) exit

esac

echo hi from script 1

echo hi from script 2

echo hi from script 3

